Hierarchical Semantic Role Labeling
نویسندگان
چکیده
We present a four-step hierarchical SRL strategy which generalizes the classical two-level approach (boundary detection and classification). To achieve this, we have split the classification step by grouping together roles which share linguistic properties (e.g. Core Roles versus Adjuncts). The results show that the nonoptimized hierarchical approach is computationally more efficient than the traditional systems and it preserves their accuracy.
منابع مشابه
برچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملDistributed Representations for Unsupervised Semantic Role Labeling
We present a new approach for unsupervised semantic role labeling that leverages distributed representations. We induce embeddings to represent a predicate, its arguments and their complex interdependence. Argument embeddings are learned from surrounding contexts involving the predicate and neighboring arguments, while predicate embeddings are learned from argument contexts. The induced represe...
متن کاملUtilizing Target-Side Semantic Role Labels to Assist Hierarchical Phrase-based Machine Translation
In this paper we present a novel approach of utilizing Semantic Role Labeling (SRL) information to improve Hierarchical Phrasebased Machine Translation. We propose an algorithm to extract SRL-aware Synchronous Context-Free Grammar (SCFG) rules. Conventional Hiero-style SCFG rules will also be extracted in the same framework. Special conversion rules are applied to ensure that when SRL-aware SCF...
متن کاملJapanese Semantic Role Labeling with Hierarchical Tag Context Trees
In this paper we describe that the hierarchical tag context tree (HTCT) approach improves the accuracy of semantic role labeling on Japanese text. In Japanese language there are functional multiword expressions such as no-tame-ni and yotte that have potential to designate semantic relations between a predicate and its arguments. Since these expressions come to the end part of each argument, the...
متن کامل